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In this study, the integral equation method proposed recently by Sarkisov �J. Chem. Phys. 114, 9496
�2001�.�, which has proved accurate for continuous potentials, is extended successfully to the hard sphere
potential plus an attractive Yukawa tail. By comparing the results of thermodynamic properties, including the
liquid-vapor phase diagram, with available simulation data, it is found that this method remains reliable for this
class of models of interaction often used in colloid science.
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The hard-core Yukawa �HCY� potential type

u�r� = �� , r � � ,

�� exp�− ��r − ���/r , r � � ,
� �1�

has often been used to model effective interactions between
pairs of particles of size � separated by a distance r in simple
as well as complex fluids. Depending on the sign of the
strength � and the decay of the tail through parameter �, a
vast amount of physical systems can be described, which are
as different as charged-stabilized colloids, colloid/polymer
mixtures, dense plasma, ionic fluids �1�, fullerenes �2,3�, and
protein liquids �3�. When � is negative, the tail of HCY
potential is attractive and fundamental issues such as phase
transitions, namely, solid-fluid and fluid-fluid transitions, in
colloid science can be investigated.

The prediction of microscopic and macroscopic properties
as well as the phase diagrams of the attractive HCY fluids
have been reported in the literature either by Monte Carlo
�MC� or molecular dynamics �MD� simulation tools �4–12�.
Theoretical approaches have also been performed in the
framework of the statistical physics of fluids, such as the
density functional theory �13� and the integral equations �IE�
method. The latter, consisting in solving the Ornstein-
Zernike �OZ� equation together with an approximate closure
relation, is a powerful means for this purpose �14�. As a
matter of fact, recently, semianalytical methods such as self-
consistent OZ approximation �SCOZA� �9�, generalized
mean spherical approximation �GMSA� �15�, modified hy-
pernetted chain �MHNC�, and hybrid mean spherical ap-
proximation �HMSA� �16� have been used for the description
of structure and thermodynamics of the HCY model with
various ranges of attraction.

A reliable integral equation has been proposed recently by
Sarkisov �17�, which reaches a good degree of thermody-
namic consistency for a wide class of Lennard-Jones type
potentials �18�, even in the vicinity of the critical point �19�.
One advantage of this IE over the above mentioned ones is
that there is no adjustable parameter to be optimized in the
approximate closure relation. The aim of this work is to

present an extension of Sarkisov’s approach to the case of
potentials such as those given by Eq. �1� comprising a hard-
core. By applying it to the case of attractive HCY with �
=1.8, we show that a correct description of thermodynamic
properties and the liquid-vapor phase diagram can be ob-
tained. Our results are compared to studies that have been
published using either simulation or theoretical approaches.

According to the OZ equation, for a fluid with number
density �, the total correlation function between two particles
h�r� is the sum of the direct correlation function c�r� and the
indirect correlation function ��r� such as

h�r� = c�r� + �� h�r��c��r − r���dr� = c�r� + ��r� . �2�

In the integral equation method, Eq. �2� is solved together
with a closure relation

g�r� = exp�− 	u�r� + ��r� + B�r�� , �3�

where 	=1/kBT is the inverse temperature T �kB being
Boltzmann’s constant� and g�r� �=h�r�+1� is the pair-
correlation function. Equation �3� depends on the so-called
bridge function B�r�, which represents an infinite sum of
elementary bridge diagrams �20�. A careful analysis by Mar-
tinov et al. �21� has shown that the bridge function is not a
functional of the indirect correlation function solely, but it
also depends on the interaction potential, via �*�r�=��r�
−	��3u2�r�, where u2�r� is the attractive part of the pair
potential according to the Weeks, Chandler, and Andersen
�WCA� splitting �22�. Following Sarkisov’s scheme �17� as
applied to the Lennard-Jones potential, B�r� is written as

B�r� = �1 + 2�*�r��1/2 − 1 − �*�r� . �4�

When a potential containing a hard sphere part such as Eq.
�1� is considered, the solutions of integral equations given by
Eqs. �2� and �3� inside the core region are those of the
Percus-Yevick �23� approximation whatever the bridge func-
tion used. In this case, Llano-Restrepo and Chapman �24�
have shown from simulation results of the bridge function
that B�r� is a functional of ��r�+ f�r�, with a good degree of
accuracy, where f�r�=exp�−	u�r��−1 is the Mayer function.
Later, Lee �25� has shown for the pure HS potential, using a
Verlet-modified-type bridge function, that an efficient renor-
malization is ��r�+��3f�r� /2. We extend here these ideas to
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potentials given by Eq. �1�, having a hard-core as well as an
attractive tail, by taking

�*�r� = ���r� + ��3f���/2, r � � ,

��r� + ��3f�r�/2, r � � .
� �5�

As pointed out by Duh and Haymet �26�, the choice of the
renormalization has to be guided by the unique functionality
with respect to �*�r�. In Fig. 1, we have drawn B��*�r�� for
the different thermodynamic states investigated here �see
Tables I and II� using Eq. �5�. It is clearly seen that the

unique functionality is achieved for the scheme proposed
here.

We apply this IE scheme to the attractive HCY with �
=1.8. In order to emphasize the improvements that can be
obtained by using Eq. �5� in the bridge function �4� of HCY
fluids instead of Sarkisov’s original scheme, the calculation
of thermodynamic properties and the liquid-vapor phase dia-
gram have been done in both cases. Using the algorithm of
Labik et al. �27�, we determine numerically the pair-
correlation function and its thermodynamic derivatives from
which the thermodynamic quantities of interest can be calcu-
lated easily. The derivatives of g�r� have been performed in
an exact manner using the tangent linear method �28� that we
have developed within the IE theory �29�. The correlation
functions are calculated with a numerical error less than 1%.
From a technical point of view, the correlation functions are
sampled on a grid of 8192 points with a mesh of 0.005�,
which implies a spatial extension Rmax=40.96�, sufficient
for an accurate numerical integration and fast Fourier trans-
form.

The compressibility factor Z is determined from the virial
equation of state such as

Z =
	P

�
= 1 +

2


3
��3g��+� −

2
�	

3
�

�

Rmax

r
du�r�

dr
g�r�r2dr ,

�6�

where P is the pressure. From the latter, the inverse isother-
mal compressibility is derived:
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Finally, the excess chemical potential is calculated using the
form proposed by Kyseliov and Martynov �30�

TABLE I. Compressibility factor, Z=	P /� of the attractive
HCY fluid with �=1.8. “Sar. new” and “Sar.” correspond to the
results obtained with Sarkisov’s bridge function, respectively, using
the renormalization procedure given by Eq. �5� and the standard
one. The SCOZA results of Pini et al. �9� are included, as well as
the MC and MD simulation data of Henderson et al. �4� and Rey et
al. �6� for comparison. According to these authors, the uncertainty
in the MD and MC data is 0.05.

kBT /� ��3 MC/MD Sar. new Sar. SCOZA

� 0.4 2.52a 2.500 2.502 2.518

0.6 4.22a 4.222 4.226 4.283

0.8 7.65a 7.568 7.549 7.750

2 0.4 1.12b 1.121 1.098 1.120

0.6 2.00b 1.965 1.899 1.977

0.8 4.46b 4.310 4.191 4.433

1.5 0.4 0.67b 0.664 0.637 0.667

0.5 0.81b 0.824 0.777

0.6 1.22b 1.203 1.133 1.22

0.8 3.37b 3.178 3.066 3.333

1 0.6 −0.24b −0.343 −0.379

0.7 0.19b −0.014 −0.037

0.8 1.17b 0.804 0.825

aReference �4�.
bReference �6�.

TABLE II. Inverse isothermal compressibility of the attractive
HCY fluid with �=1.8. “Sar. new” and “Sar.” correspond to the
results of Sarkisov’s bridge function, respectively, using the renor-
malization procedure given by Eq. �5� and the standard one. The
SCOZA results and MC data of Pini et al. �9� are included for
comparison. Numbers in parentheses give the error in the last
figure.

kBT /� ��3 MC Sar. new Sar. SCOZA

� 0.4 0.1958�2� 0.1998 0.1997 0.19744

0.6 0.0848�5� 0.0891 0.0891 0.08721

2 0.4 0.4992�8� 0.5029 0.5255 0.50439

0.6 0.1594�5� 0.1632 0.1693 0.15976

1.5 0.4 0.968�3� 1.0092 1.1173 1.01500

0.6 0.2217�5� 0.2299 0.2341 0.22147FIG. 1. Bridge function for the attractive HCY potential as a
function of the renormalized indirect correlation function �*=��r�
+��3f�r� /2 considered in this work for several temperatures and
densities.
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4

3
B�r���r2dr . �8�

A mapping of the thermodynamic space in the �T ,�� plane
has been performed using an adaptative technique as de-
scribed in Ref. �18�. To this end, a two-dimensional grid with
an initial temperature step T=0.01kB /� and a density step
�=0.01�−3 has been used. We have also considered sepa-
rately from the mapping the case when 	 tends to zero, i.e.,
T tends to infinity, such that the HS potential is recovered.

In Table I, we have gathered the results for the compress-
ibility factor Z given by Eq. �6� for several isotherms and
also for the HS limiting case. These are compared to MD
data �6� for finite temperatures and to the MC ones of Hend-
erson et al. �4� for T→�. The very accurate results obtained
by Pini et al. �9� with SCOZA are also reported for compari-
son. The results obtained from the extended Sarkisov’s IE
method proposed in this work are in very good agreement
with simulation data, and are improved over those from
Sarkisov’s original scheme. The fact that the thermodynamic
quantities are well described over a wide range of states
gives a physical justification of the present renormalization
scheme, which meets the unique functionality. Finally, it is
seen that an accuracy comparable to SCOZA is generally
achieved. These observations also hold for the isothermal
compressibility given in Table II.

In Fig. 2, the liquid-vapor coexistence curves are drawn
for the extended IE method. For each isotherm of the map-
ping, the densities of the coexisting liquid and vapor have
been obtained by requiring the equality of the pressures �Eq.
�6�� as well as of the chemical potentials ��=�ex+kBT ln ��
�Eq. �8�� in both phases. These IE results of the binodal line
are compared to the MC data of Pini et al. �9�, and also to
those of Smit and Frenkel �5�. It is seen that the IE method of
this work is reliable, though the densities of the vapor branch
are slightly overestimated in the vicinity of the critical iso-
therm, while those of the liquid branch are overestimated at
lower temperatures. Let us now infer the critical point from
the position of the maximum of the spinodal line shown in
Fig. 2. The spinodal line is constructed from the points where
the isothermal compressibility �Eq. �7�� vanishes �see Ref.
�18� for a more detailed description�. We have found Tc

=1.228±0.002 and �c
*=0.295±0.005, which are close to the

simulation results of Smit and Frenkel �5�, Lomba and Al-
marza �7�, and Pini et al. �9� who have found �Tc

*=1.192,
�c

*=0.294�, �Tc
*=1.178, �c

*=0.313�, and �Tc
*=1.212, �c

*

=0.312�, respectively. The approach presented here is com-
parable in accuracy with the SCOZA and are slightly better
than the results of the MHNC and HMSA integral equations
�16� for which �Tc

*=1.21, �c
*=0.28� and �Tc

*=1.25, �c
*=0.36�

are found, respectively. Using the standard scheme of
Sarkisov, the results are not as good as with the method
proposed here. For the critical point, we have found Tc

*

=1.252 and �c
*=0.31.

In summary, we have performed calculations of the ther-
modynamic properties for the hard-core Yukawa potential in
the framework of the integral equation theory, using the
bridge function of Sarkisov �17�. By improving the renor-
malization procedure of the indirect correlation function ini-
tially developed for continuous potentials, we have shown
that accurate results are obtained for a wide range of thermo-
dynamic states in the case of potentials comprised of a hard-
core. Compared to Monte Carlo and molecular dynamics
simulations data, the liquid-vapor coexistence curves are cor-
rectly described including the location of the critical point. A
wide class of complex fluids can now be tackled within the
integral equation scheme considered in this work, for in-
stance, using the HCY with different values of � �for the
purpose of studying the end critical point �8��, hard-core
double Yukawa and square-well potentials. All these poten-
tials containing a hard-core are often used for the description
of the interactions in real colloidal systems �31–33�. Since
the hard-core seems to be satisfactorily considered, the influ-
ence of the range of the interactions can now be investigated.
Works along these lines are under progress.

FIG. 2. Liquid-vapor phase diagram of the attractive HCY po-
tential as obtained with Sarkisov’s bridge function using the renor-
malization procedure given by Eq. �5�. Solid and dashed lines cor-
respond to the binodal and spinodal, respectively. The triangles and
circles are the simulation data of Smit and Frenkel �5� and Pini et
al. �9�, respectively.

BRIEF REPORTS PHYSICAL REVIEW E 74, 052501 �2006�

052501-3



�1� J. S. Rowlinson, Physica A 156, 15 �1989�.
�2� N. W. Ashcroft, Nature �London� 365, 387 �1993�; M. H. J.

Hagen, E. J. Meijer, G. C. A. M. Mooij, D. Frenkel, and H. N.
W. Lekkerkerker, ibid. 365, 425 �1993�.

�3� C. Caccamo and G. Pellicane, J. Chem. Phys. 117, 5072
�2002�.

�4� D. Henderson, E. Waisman, J. L. Lebowitz, and L. Blum, Mol.
Phys. 35, 241 �1978�.

�5� B. Smit and D. Frenkel, Mol. Phys. 74, 35 �1991�.
�6� C. Rey, L. J. Gallego, and L. E. Gonzalez, J. Chem. Phys. 96,

6984 �1992�.
�7� E. Lomba and N. G. Almarza, J. Chem. Phys. 100, 8367

�1994�.
�8� M. H. J. Hagen and D. Frenkel, J. Chem. Phys. 101, 4093

�1994�.
�9� D. Pini, G. Stell, and N. B. Wilding, Mol. Phys. 95, 483

�1998�.
�10� E. Garnett, L. Mier-y-Teran, and F. del Rio, Mol. Phys. 97,

597 �1999�.
�11� K. Shukla, J. Chem. Phys. 112, 10358 �2000�.
�12� M. Gonzalez-Melchor, A. Trokhymchuka, and A. Alejandre, J.

Chem. Phys. 115, 3862 �2001�.
�13� L. Mederos and G. Navascues, J. Chem. Phys. 101, 9841

�1994�.
�14� C. Caccamo, Phys. Rep. 274, 1 �1996�.
�15� C. Caccamo, G. Pellicane, and D. Costa, J. Phys.: Condens.

Matter 12, A437 �2000�.
�16� C. Caccamo, G. Giunta, and G. Malescio, Mol. Phys. 84, 125

�1995�.
�17� G. Sarkisov, J. Chem. Phys. 114, 9496 �2001�.
�18� I. Charpentier and N. Jakse, J. Chem. Phys. 123, 204910

�2005�.

�19� G. Sarkisov, J. Chem. Phys. 119, 373 �2003�.
�20� G. A. Martynov, Fundamental Theory of Fluids. Methods of

Distribution Functions �Higer, Bristol, 1992�.
�21� G. A. Martynov, G. N. Sarkisov, and A. G. Vompe, J. Chem.

Phys. 110, 3961 �1999�.
�22� J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys.

54, 5237 �1971�.
�23� J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 �1958�.
�24� M. Llano-Restrepo and W. Chapman, J. Chem. Phys. 100,

5139 �1994�.
�25� L. L. Lee, J. Chem. Phys. 103, 9388 �1995�; 107, 7360

�1997�.
�26� D. M. Duh and A. D. J. Haymet, J. Chem. Phys. 103, 2625

�1995�.
�27� S. Labik, A. Malijevski, and P. Vonka, Mol. Phys. 56, 709

�1985�.
�28� Automatic Differentiation of Algorithms: Theory, Implementa-

tion and Applications, edited by A. Griewank and C. F. Corliss
�SIAM, Philadelphia, 1991�; Computational Differentiation:
Applications, Techniques and Tools, edited by M. Berz, C. H.
Bischof, C. F. Corliss, and A. Griewank �SIAM, Philadelphia,
1996�.

�29� I. Charpentier and N. Jakse, J. Chem. Phys. 114, 2284 �2001�;
N. Jakse and I. Charpentier, Phys. Rev. E 67, 061203 �2003�.

�30� O. E. Kiselyov and G. A. Martynov, J. Chem. Phys. 93, 1942
�1990�.

�31� M. Malfois, F. Bonneté, L. Belloni, and A. Tardieu, J. Chem.
Phys. 105, 3290 �1996�.

�32� G. Foffi, C. De Michele, F. Sciortino, and P. Tartaglia, Phys.
Rev. Lett. 94, 078301 �2005�.

�33� Y. Liu, E. Fratini, P. Baglioni, W. R. Chen, and S. H. Chen,
Phys. Rev. Lett. 95, 118102 �2005�.

BRIEF REPORTS PHYSICAL REVIEW E 74, 052501 �2006�

052501-4


